多发性骨髓瘤
多发性骨髓瘤是第二常见的血液系统恶性肿瘤,也是最常累及骨骼的癌症。在多发性骨髓瘤中,癌变的浆细胞聚集在骨髓中,排挤健康的血细胞。癌细胞不是产生有益的抗体,而是产生可能导致并发症的异常蛋白质。
骨髓瘤是最常见的骨骼肿瘤,超过80%的骨髓瘤患者存在骨病 [1]。多发性骨髓瘤在临床和生物学上具有异质性,一些遗传改变被认为是骨髓瘤发生的驱动事件。二代测序显示,多发性骨髓瘤 [2]缺乏普遍的驱动突变。多发性骨髓瘤患者中出现的最常见突变是KRAS(23%的患者)、NRAS(20%)、FAM46C(11%)、DIS3(11%)和TP53(8%)。其他较少见但经常突变的基因包括BRAF, TRAF3, PRDM1, CYLD, RB1, IRF4, EGR1, MAX, HIST1H1E和ACTG1 [3-6]。
本文根据NCG(分析肿瘤基因的可重复性、同源性和网络特性)提供的信息,列出了与多发性骨髓瘤相关的部分蛋白。
本文介绍了参与多发性骨髓瘤发病机制的几个关键靶点,包括:
● ALOX12(花生四烯酸盐12-脂氧合酶,12S型)作用于不同的多不饱和脂肪酸底物,产生具有生物活性的脂质介质,包括二十碳烷和脂氧素。在炎症和氧化[7]中起重要作用。ALOX12的DNA异常甲基化和遗传变异与人类多种疾病和病理表型相关。ALOX12 rs1126667和rs434473与[8]治疗多发性骨髓瘤患者早期周围神经病变显著相关。
● 细胞周期蛋白D1 (CCND1)参与细胞周期的正常调节和肿瘤形成。融合、重排、错义突变、无义突变、沉默突变以及框内缺失和插入可在癌症中观察到。Eman M. sewiify等报道在多发性骨髓瘤 [9]患者中,cyclin D1基因扩增与疾病严重程度、不良预后以及MDR1表达增加相关。
● DIS3 (DIS3 Homolog, Exosome Endoribonuclease And 3'-5' Exoribonuclease)是一种与酵母蛋白Rrp44同源的RNA酶,可作为真核细胞细胞核内外泌体复合体的一部分。DIS3同时具有3'-5'核酸外切酶和核酸内切酶活性。DIS3是多发性骨髓瘤中最常见的突变基因之一,其突变热点与功能 [10]的变化一致。
● FAM46C (family with sequence similarity 46,成员C)是一种多聚A (A)聚合酶,与FAM46蛋白FAM46A、FAM46A和fam46d属于核苷酸转移酶超家族 [11]。它是多发性骨髓瘤中最常见的突变基因之一 [12]。FAM46C的功能丧失通过内质网反应转录物的不稳定驱动多发性骨髓瘤。FAM46C突变通过扰乱浆细胞分化和内质网稳态促进骨髓瘤发病和疾病进展。
● MAGED1(黑色素瘤相关抗原D1)是MAGE同源结构域(MHD)蛋白超家族的成员之一。MAGED1在发育和成年组织中普遍表达,但在大脑中特别丰富 [13]。Venkata D Yellapantula等人报道了使用全基因组测序和全外显子组测序初步鉴定的9个频繁突变基因列表,包括NRAS、KRAS、TP53、PNRC1、MAGED1、FAM46C、DIS3、CCND1和ALOX12B [14]。
参考文献:
[1] Galson DL, Silbermann R, Roodman GD. Mechanisms of multiple myeloma bone disease [J]. Bonekey Rep. 2012, 1;1:135.
[2] Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma [J]. Nat. Rev. Cancer. 2012, 12, 335–348.
[3] Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma [J]. J. Clin. Oncol. 2015, 33, 3911–3920.
[4] Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes [J]. Nature. 2012, 484, 69–74.
[5] Avet-Loiseau, H. et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma [J]. Intergroupe Francophone Myelome. Cancer Res. 1999, 59, 4546–4550.
[6] Shaji K. Kumar, Vincent Rajkumar, Robert A. Kyle et al. Multiple myeloma [J]. NATURE REVIEWS. 2017, 17046.
[7] Zhonghua Zheng, Yin Li, Gehui Jin et al. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases [J]. Biomedicine & Pharmacotherapy. 2020, 129: 110354.
[8] T. Kim, H.J. Kim, J.K. Park, et al., Association between polymorphisms of arachidonate 12-lipoxygenase (ALOX12) and schizophrenia in a Korean population, Behav [J]. Brain Funct. 2010, 6: 44.
[9] Eman M. Sewify, Ola A. Afifi and Eman Mosad. Cyclin D1 Amplification in Multiple Myeloma Is Associated With Multidrug Resistance Expression [J]. ORIGINAL STUDY. 2014, 14 (3): 215-222.
[10] Brian A. Walker. The Chromosome 13 Conundrum in Multiple Myeloma [J]. Blood Cancer Discov. 2020, 1 (1): 16-17.
[11] Kuchta K, Knizewski L, Wyrwicz LS et al. Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human [J]. Nucleic Acids Res. 2009, 37(22):7701-14.
[12] Yuan Xiao Zhu, Chang-Xin Shi, Laura A. Bruins et al. Loss of FAM46C promotes cell survival in myeloma [J]. Cancer Res. 2017, 77(16): 4317–4327.
[13] Salehi AH, Roux PP, Kubu CJ et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis [J]. Neuron. 2000, 27, 279-288.
[14] Venkata D Yellapantula, Christopher Murray, Winnie Liang, et al. Gene Expression Profiling Of Multiple Myeloma Samples Using RNA Sequencing Identifies Frequent Rearrangements Of FCHSD2 [J]. Blood. 2013, 122 (21): 534.