Recombinant Human ATP-dependent RNA helicase DDX3X (DDX3X)
In Stock-
货号:CSB-EP006621HU
-
规格:¥1344
-
图片:
-
(Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.
-
Based on the SEQUEST from database of E.coli host and target protein, the LC-MS/MS Analysis result of CSB-EP006621HU could indicate that this peptide derived from E.coli-expressed Homo sapiens (Human) DDX3X.
-
Based on the SEQUEST from database of E.coli host and target protein, the LC-MS/MS Analysis result of CSB-EP006621HU could indicate that this peptide derived from E.coli-expressed Homo sapiens (Human) DDX3X.
-
-
其他:
产品详情
-
纯度:Greater than 90% as determined by SDS-PAGE.
-
基因名:
-
Uniprot No.:
-
别名:ATP dependent RNA helicase DDX3X; ATP-dependent RNA helicase DDX3X; CAP Rf; DBX; DDX14; DDX3X; DDX3X_HUMAN; DEAD (Asp Glu Ala Asp) box polypeptide 3 X linked; DEAD (Asp-Glu-Ala-Asp) box helicase 3; X-linked; DEAD box; DEAD box protein 3; DEAD box protein 3 X-chromosomal; DEAD box X isoform; DEAD box; X isoform; DEAD/H (Asp Glu Ala Asp/His) box polypeptide 3; DEAD/H box 3; DEAD/H box 3; X-linked; Helicase like protein 2; Helicase-like protein 2; HLP2; X isoform; X-chromosomal
-
种属:Homo sapiens (Human)
-
蛋白长度:Full Length of Mature Protein
-
来源:E.coli
-
分子量:87.1kDa
-
表达区域:2-662aa
-
氨基酸序列SHVAVENALGLDQQFAGLDLNSSDNQSGGSTASKGRYIPPHLRNREATKGFYDKDSSGWSSSKDKDAYSSFGSRSDSRGKSSFFSDRGSGSRGRFDDRGRSDYDGIGSRGDRSGFGKFERGGNSRWCDKSDEDDWSKPLPPSERLEQELFSGGNTGINFEKYDDIPVEATGNNCPPHIESFSDVEMGEIIMGNIELTRYTRPTPVQKHAIPIIKEKRDLMACAQTGSGKTAAFLLPILSQIYSDGPGEALRAMKENGRYGRRKQYPISLVLAPTRELAVQIYEEARKFSYRSRVRPCVVYGGADIGQQIRDLERGCHLLVATPGRLVDMMERGKIGLDFCKYLVLDEADRMLDMGFEPQIRRIVEQDTMPPKGVRHTMMFSATFPKEIQMLARDFLDEYIFLAVGRVGSTSENITQKVVWVEESDKRSFLLDLLNATGKDSLTLVFVETKKGADSLEDFLYHEGYACTSIHGDRSQRDREEALHQFRSGKSPILVATAVAARGLDISNVKHVINFDLPSDIEEYVHRIGRTGRVGNLGLATSFFNERNINITKDLLDLLVEAKQEVPSWLENMAYEHHYKGSSRGRSKSSRFSGGFGARDYRQSSGASSSSFSSSRASSSRSGGGGHGSSRGFGGGGYGGFYNSDGYGGNYNSQGVDWWGN
Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request. -
蛋白标签:N-terminal 6xHis-B2M-tagged
-
产品提供形式:Liquid or Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand. -
缓冲液:Tris-based buffer,50% glycerol
-
储存条件:Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
-
保质期:The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C. -
货期:3-7 business days
-
注意事项:Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
-
产品描述:Recombinant Human ATP-dependent RNA helicase DDX3X是一种人源ATP依赖的RNA解旋酶,属于DEAD-box家族。DDX3X在细胞内参与多种核酸代谢和调控过程,包括RNA剪切、转录调控、mRNA运输、核-细胞质转运等。此外,DDX3X还在细胞免疫应答中发挥关键作用。DX3X在许多生物学过程中起着至关重要的作用。例如,它可以调节HMGB1的核转运,从而促进其在细胞质中的积累,并最终导致炎症反应。此外,DDX3X还能与TRPV4相互作用,调节钙离子流入和DDX3X在细胞内的核积累。DDX3X还被发现在Dengue、Hepatitis C和Zika病毒感染的细胞中有重要作用。研究表明,DDX3X可以与Drosha/DGCR8复合物相互作用,提高其对初级miRNA的加工活性,进而增加成熟miRNA的表达水平。j9九游会登录入口首页生物大肠杆菌表达系统所表达DDX3X全长重组蛋白,高稳定性、高纯度等特点,帮助您进行其在RNA代谢、细胞免疫应答、病毒感染和DNA修复等方向的研究。
-
Datasheet & COA:Please contact us to get it.
相关产品
靶点详情
-
功能:Multifunctional ATP-dependent RNA helicase. The ATPase activity can be stimulated by various ribo-and deoxynucleic acids indicative for a relaxed substrate specificity. In vitro can unwind partially double-stranded DNA with a preference for 5'-single-stranded DNA overhangs. Binds RNA G-quadruplex (rG4s) structures, including those located in the 5'-UTR of NRAS mRNA. Involved in many cellular processes, which do not necessarily require its ATPase/helicase catalytic activities. Involved in transcription regulation. Positively regulates CDKN1A/WAF1/CIP1 transcription in an SP1-dependent manner, hence inhibits cell growth. This function requires its ATPase, but not helicase activity. CDKN1A up-regulation may be cell-type specific. Binds CDH1/E-cadherin promoter and represses its transcription. Potentiates HNF4A-mediated MTTP transcriptional activation; this function requires ATPase, but not helicase activity. Facilitates HNF4A acetylation, possibly catalyzed by CREBBP/EP300, thereby increasing the DNA-binding affinity of HNF4 to its response element. In addition, disrupts the interaction between HNF4 and SHP that forms inactive heterodimers and enhances the formation of active HNF4 homodimers. By promoting HNF4A-induced MTTP expression, may play a role in lipid homeostasis. May positively regulate TP53 transcription. Associates with mRNPs, predominantly with spliced mRNAs carrying an exon junction complex (EJC). Involved in the regulation of translation initiation. Not involved in the general process of translation, but promotes efficient translation of selected complex mRNAs, containing highly structured 5'-untranslated regions (UTR). This function depends on helicase activity. Might facilitate translation by resolving secondary structures of 5'-UTRs during ribosome scanning. Alternatively, may act prior to 43S ribosomal scanning and promote 43S pre-initiation complex entry to mRNAs exhibiting specific RNA motifs, by performing local remodeling of transcript structures located close to the cap moiety. Independently of its ATPase activity, promotes the assembly of functional 80S ribosomes and disassembles from ribosomes prior to the translation elongation process. Positively regulates the translation of cyclin E1/CCNE1 mRNA and consequently promotes G1/S-phase transition during the cell cycle. May activate TP53 translation. Required for endoplasmic reticulum stress-induced ATF4 mRNA translation. Independently of its ATPase/helicase activity, enhances IRES-mediated translation; this activity requires interaction with EIF4E. Independently of its ATPase/helicase activity, has also been shown specifically repress cap-dependent translation, possibly by acting on translation initiation factor EIF4E. Involved in innate immunity, acting as a viral RNA sensor. Binds viral RNAs and promotes the production of type I interferon (IFN-alpha and IFN-beta). Potentiate MAVS/DDX58-mediated induction of IFNB in early stages of infection. Enhances IFNB1 expression via IRF3/IRF7 pathway and participates in NFKB activation in the presence of MAVS and TBK1. Involved in TBK1 and IKBKE-dependent IRF3 activation leading to IFNB induction, acts as a scaffolding adapter that links IKBKE and IRF3 and coordinates their activation. Involved in the TLR7/TLR8 signaling pathway leading to type I interferon induction, including IFNA4 production. In this context, acts as an upstream regulator of IRF7 activation by MAP3K14/NIK and CHUK/IKKA. Stimulates CHUK autophosphorylation and activation following physiological activation of the TLR7 and TLR8 pathways, leading to MAP3K14/CHUK-mediated activatory phosphorylation of IRF7. Also stimulates MAP3K14/CHUK-dependent NF-kappa-B signaling. Negatively regulates TNF-induced IL6 and IL8 expression, via the NF-kappa-B pathway. May act by interacting with RELA/p65 and trapping it in the cytoplasm. May also bind IFNB promoter; the function is independent of IRF3. Involved in both stress and inflammatory responses. Independently of its ATPase/helicase activity, required for efficient stress granule assembly through its interaction with EIF4E, hence promotes survival in stressed cells. Independently of its helicase activity, regulates NLRP3 inflammasome assembly through interaction with NLRP3 and hence promotes cell death by pyroptosis during inflammation. This function is independent of helicase activity. Therefore DDX3X availability may be used to interpret stress signals and choose between pro-survival stress granules and pyroptotic NLRP3 inflammasomes and serve as a live-or-die checkpoint in stressed cells. In association with GSK3A/B, negatively regulates extrinsic apoptotic signaling pathway via death domain receptors, including TNFRSF10B, slowing down the rate of CASP3 activation following death receptor stimulation. Cleavage by caspases may inactivate DDX3X and relieve the inhibition. Independently of its ATPase/helicase activity, allosteric activator of CSNK1E. Stimulates CSNK1E-mediated phosphorylation of DVL2, thereby involved in the positive regulation of Wnt/beta-catenin signaling pathway. Also activates CSNK1A1 and CSNK1D in vitro, but it is uncertain if these targets are physiologically relevant. ATPase and casein kinase-activating functions are mutually exclusive. May be involved in mitotic chromosome segregation.; (Microbial infection) Facilitates hepatitis C virus (HCV) replication. During infection, HCV core protein inhibits the interaction between MAVS and DDX3X and therefore impairs MAVS-dependent INFB induction and might recruit DDX3X to HCV replication complex.; (Microbial infection) Facilitates HIV-1 replication. Acts as a cofactor for XPO1-mediated nuclear export of HIV-1 Rev RNAs. This function is strongly stimulated in the presence of TBK1 and requires DDX3X ATPase activity.; (Microbial infection) Facilitates Zika virus (ZIKV) replication.; (Microbial infection) Facilitates Dengue virus (DENV) replication.; (Microbial infection) Facilitates Venezuelan equine encephalitis virus (VEEV) replication.
-
基因功能参考文献:
- an N-terminal conserved Nuclear Export Signal (NES) is required for export of human DDX3 from the nucleus, and identified three regions within DDX3 that can independently facilitate its nuclear import. PMID: 30131165
- TRPV4 mediates Ca(2+) influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus. Targeting of TRPV4 reduces infectivity of dengue, hepatitis C and Zika viruses. Our results highlight the role of TRPV4 in the regulation of DDX3X-dependent control of RNA metabolism and viral infectivity. PMID: 29899501
- DDX3 regulates MTP gene expression and lipid homeostasis through interplay with HNF4 and SHP. PMID: 28128295
- Through adopting the immunoprecipitation (IP), RNA immunoprecipitation (RIP), dual luciferase reporter assays, the s illustrate that DDX3X could interact with Drosha/DGCR8 complex, elevate the processing activity of Drosha/DGCR8 complex on pri-miRNAs, and increase mature miRNA expression levels. PMID: 27586307
- our study suggested that DDX3 prevents generation of cancer stem cells through epigenetically regulating a subset of tumor-suppressive miRNAs expressions, which strengthens tumor suppressor role of DDX3 in hepatocellular carcinoma. PMID: 27344963
- this study shows that cancer-associated DDX3X mutations drive stress granule assembly and impair global translation PMID: 27180681
- we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-kappaB signal pathway by dephosphorylating IKK-beta. PMID: 28402257
- Data suggest that L protein from LCMV interactions with host proteome, specifically DDX3X, NKRF, and TRIM21. (LCMV = Lymphocytic choriomeningitis mammarenavirus; DDX3X = DEAD-box helicase 3; NKRF = NF-kappa-B-repressing factor; TRIM21 = tripartite motif-containing protein-21) PMID: 29261807
- DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation PMID: 27058758
- Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1alpha and YAP1 expression. Increased HIF-1alpha persistently promoted DDX3 expression via a KRAS/ROS/HIF-1alpha feedback loop. PMID: 28435452
- Our study suggests that rottlerin exhibits its anti-cancer activity partly due to upregulation of DDX3 in hepatocellular carcinoma cells. PMID: 29203243
- DDX3 may play an oncogenic role to promote tumor growth and invasion in colon cancer cells PMID: 27007150
- Data suggest that DEAD-box helicase 3 (DDX3X) physically interacts and co-localizes with poly(A)-binding cytoplasmic protein 1 (PABPC1) and caprin-1 in lamellipodia at the leading edge of spreading cells; these interactions are dependent on mRNA; depletion of DDX3X (via gene silencing with the CRISPR-Cas system) leads to decreased cell motility. These studies were conducted using MRC5 lung fibroblast cell line. PMID: 28733330
- The article describes RNA remodeling activity of human DDX3X and Caenorhabditis elegans LAF-1 tuned by protein concentration, RNA length, and ATP. PMID: 27546789
- the role of DDX3 in sarcomas PMID: 26364611
- DDX3 directly regulates TRAF3 ubiquitination and acts as a scaffold to co-ordinate assembly of signaling complexes downstream from MAVS. PMID: 27980081
- Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex PMID: 27300509
- Here, the s show that herpes simplex virus 1 gene expression, replication, and propagation depend on optimal DDX3X protein levels. PMID: 28148788
- de novo heterozygous DDX3X variants should be considered not only in females with unexplained ID, but also in individuals with a clinical diagnosis of T-CS. PMID: 28371085
- high metastatic DDX3 expression correlates with worse survival, implying that DDX3 is a potential therapeutic target in metastatic breast cancer, in particular in the clinically important group of TN patients. PMID: 27999982
- Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. PMID: 27118832
- Data show that knockdown of RNA helicase DDX3 in breast cancer MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates. PMID: 26337079
- Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. PMID: 27012366
- The results do not support our hypothesis that common germline genetic variants in the DDX3X genes is associated with the risk of developing medulloblastoma. PMID: 26290144
- analysis of the structural and functional core of the DDX3 subfamily of DEAD-box proteins PMID: 26598523
- The DDX3 may participate in antiviral innate immunity, at least in part, by translational control of interferon-induced protein kinase (PACT). PMID: 26454002
- As such, DDX3 has been shown to play roles both upstream and downstream of I-kappa beta kinase epsilon (IKKepsilon)/TANK-binding kinase 1, leading to IFN-beta production. PMID: 26174373
- Data show that DEAD-box helicase 3 (DDX3) had a significant prognostic predictive power in colorectal cancer at both RNA and protein level. PMID: 26087195
- Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer. PMID: 25918862
- Loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3-beta-catenin axis and inhibited non-homologous end joining-the major DNA repair pathway in mammalian somatic cells. PMID: 25820276
- T-cell lymphoma patients with DDX3X mutations presented a poor prognosis. PMID: 26192917
- Either ligand-independent or ligand-induced EGFR phosphorylation was inhibited in lung cancer cells that strongly expressed DDX3X. PMID: 25343452
- Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. PMID: 26235985
- Data suggest complex translational control mechanism(s) for the human DDX3X gene locus functioning only in the male germ line and resulting in expression of its protein only in the postmeiotic spermatids. PMID: 25208899
- Low/negative DDX3 expression in tumor cells was significantly associated with aggressive clinical manifestations and might be an independent survival predictor, particularly in non-smoker patients with OSCC PMID: 23410059
- identification of DDX3X mutations in 10% of cases, preferentially in males (4/5 cases); analysis suggested an association between DDX3X inactivation and clinically unfavorable features and poor outcome of chronic lymphocytic leukaemia PMID: 25382417
- The DDX3-Rac1-beta-catenin regulatory axis in modulating the expression of Wnt/beta-catenin target genes. PMID: 25043297
- Upon infection, the HCV 3'UTR redistributes DDX3X and IKK-alpha to speckle-like cytoplasmic structures shown to be stress granules. PMID: 25740981
- Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis. PMID: 25724843
- Mutations in DDX3X gene is associated with recurrent convergent evolution in chronic lymphocytic leukemia. PMID: 25377784
- DDX3X, a member of DEAD-box RNA helicase, is necessary for IFN production and could inhibit DENV replication PMID: 25437271
- This review discusses the considerable body of work on the biochemistry and biology of DDX3, including the recently discovered link of human DDX3 to tumorigenesis. PMID: 25039764
- Overall, these results demonstrate that DDX3 represents an intrinsic host antiviral factor that restricts hepatitis B virus transcription. PMID: 25231298
- These results suggest that anti-DDX3X immunotherapy is a promising treatment option in efforts to eradicate CSC in the clinical setting. PMID: 23974721
- DDX3 loss by p53 inactivation via MDM2/Slug/E-cadherin pathway promotes tumor malignancy and poor patient outcome PMID: 23584477
- Host DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions. PMID: 24418539
- DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function. PMID: 24183723
- DDX3 is a new key molecule to understand the molecular mechanism underlying RNAi pathway in mammals. PMID: 23527197
- Results suggest that distinct DDX DEAD-box RNA helicases DDX3 and DDX5 cooperate to modulate the HIV-1 Rev function. PMID: 23608157
- In pediatric T-acute lymphoblastic leukemia, we have identified 2 RNA processing genes, that is, HNRNPH1/5q35 and DDX3X/Xp11.3 as new MLLT10 fusion partners. PMID: 23673860
显示更多
收起更多
-
相关疾病:Mental retardation, X-linked 102 (MRX102)
-
亚细胞定位:Cell membrane. Nucleus. Cytoplasm. Cytoplasm, Stress granule. Inflammasome. Cell projection, lamellipodium. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome.
-
蛋白家族:DEAD box helicase family, DDX3/DED1 subfamily
-
组织特异性:Widely expressed. In testis, expressed in spermatids. Expressed in epidermis and liver (at protein level).
-
数据库链接:
HGNC: 2745
OMIM: 300160
KEGG: hsa:1654
STRING: 9606.ENSP00000382840
UniGene: Hs.728563
Most popular with customers
-
Recombinant Human 5'-nucleotidase (NT5E) (Active)
Express system: Mammalian cell
Species: Homo sapiens (Human)
-
Recombinant Human Tumor necrosis factor receptor superfamily member 9 (TNFRSF9), partial (Active)
Express system: Mammalian cell
Species: Homo sapiens (Human)
-
Recombinant Human Cannabinoid receptor 1 (CNR1)-VLPs (Active)
Express system: Mammalian cell
Species: Homo sapiens (Human)
-
Express system: Mammalian cell
Species: Homo sapiens (Human)
-
Recombinant Human Lymphocyte antigen 6 complex locus protein G6d (LY6G6D) (Active)
Express system: Yeast
Species: Homo sapiens (Human)
-
Recombinant Macaca fascicularis Trophoblast glycoprotein (TPBG), partial (Active)
Express system: Mammalian cell
Species: Macaca fascicularis (Crab-eating macaque) (Cynomolgus monkey)
-
Recombinant Human Dickkopf-related protein 1 (DKK1) (Active)
Express system: Mammalian cell
Species: Homo sapiens (Human)
-
Recombinant Human Transmembrane 4 L6 family member 1(TM4SF1)-VLPs (Active)
Express system: Mammalian cell
Species: Homo sapiens (Human)