Your Good Partner in Biology Research

POLR2A Antibody

  • 货号:
    CSB-PA004026
  • 规格:
    ¥880
  • 图片:
    • Western Blot analysis of HT29 cells using Rpb1 Polyclonal Antibody
  • 其他:

产品详情

  • Uniprot No.:
    P24928
  • 基因名:
    POLR2A
  • 别名:
    DNA directed RNA polymerase II A antibody; DNA-directed RNA polymerase II largest subunit RNA polymerase II 220 kd subunit antibody; DNA-directed RNA polymerase II subunit A antibody; DNA-directed RNA polymerase II subunit RPB1 antibody; DNA-directed RNA polymerase III largest subunit antibody; hRPB220 antibody; hsRPB1 antibody; POLR2 antibody; Polr2a antibody; POLRA antibody; Polymerase (RNA) II (DNA directed) polypeptide A 220kDa antibody; Polymerase (RNA) II (DNA directed) polypeptide A antibody; RNA polymerase II subunit B1 antibody; RNA-directed RNA polymerase II subunit RPB1 antibody; RPB1 antibody; RPB1_HUMAN antibody; RPBh1 antibody; RpIILS antibody; RPO2 antibody; RPOL2 antibody
  • 宿主:
    Rabbit
  • 反应种属:
    Human,Mouse,Rat,Monkey
  • 免疫原:
    Synthesized peptide derived from Human Rpb1 around the non-phosphorylation site of S1619.
  • 免疫原种属:
    Homo sapiens (Human)
  • 标记方式:
    Non-conjugated
  • 抗体亚型:
    IgG
  • 纯化方式:
    The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen.
  • 浓度:
    It differs from different batches. Please contact us to confirm it.
  • 保存缓冲液:
    Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.
  • 产品提供形式:
    Liquid
  • 应用范围:
    WB, IHC, IF, ELISA
  • 推荐稀释比:
    Application Recommended Dilution
    WB 1:500-1:2000
    IHC 1:100-1:300
    IF 1:200-1:1000
    ELISA 1:10000
  • Protocols:
  • 储存条件:
    Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
  • 货期:
    Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.

产品评价

靶点详情

  • 功能:
    DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Regulation of gene expression levels depends on the balance between methylation and acetylation levels of tha CTD-lysines. Initiation or early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression.; (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome.
  • 基因功能参考文献:
    1. XPC is an RNA polymerase II cofactor recruiting ATAC coactivator complex to promoters by interacting with E2F1. PMID: 29973595
    2. weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation. PMID: 28945358
    3. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. PMID: 28994650
    4. Results identified rs2071504 in POLR2A gene to be associated with poor overall and disease-free survival of patients with an early-stage non-small cell lung cancer. PMID: 28922562
    5. Dara indicate that hydrogen peroxide alters RNA polymerase II (Pol II) occupancy at promoters and enhancers genome-wide. PMID: 28977633
    6. Rpb1/2 dynamics help govern the decision between sense and divergent antisense transcription. PMID: 28506463
    7. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes. PMID: 28331082
    8. Data show that inhibition of VCP/p97, or siRNA-mediated ablation of VCP/p97 impairs ultraviolet radiation (UVR)-induced RNA polymerase II (RNAPII) degradation. PMID: 28036256
    9. Role of chromatin-bound EGFR and ERK kinases in RNA polymerase 2 transcription PMID: 27587583
    10. recurrent somatic mutations in POLR2A hijack this essential enzyme and drive meningioma neoplasia PMID: 27548314
    11. the Elongin A ubiquitin ligase and the CSB protein function together in a common pathway in response to Pol II stalling and DNA damage PMID: 28292928
    12. By studying global gene expression patterns and genome-wide DNA-binding patterns of CGGBP1, it has been shown that a possible mechanism through which it affects the expression of RNA Pol II-transcribed genes in trans depends on Alu RNA. PMID: 25483050
    13. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A are known to confer elevated sensitivity to pharmacological suppression.hese include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA PMID: 28027311
    14. HIV Tat precisely controls RNA polymerase II recruitment and pause release to fine-tune the initiation and elongation steps in target genes. PMID: 26488441
    15. TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. PMID: 27058666
    16. Its variant is not related to sporadic PD in Chinese Han population. PMID: 26432391
    17. Data suggest RNA polymerase II (POLR2A) is extensively modified on its unique C-terminal domain (CTD) by O-GlcNAc transferase (OGT); efficient O-GlcNAcylation requires a minimum of 20 heptad CTD repeats in POLR2A and more than half of NTD of OGT. PMID: 26807597
    18. Serine phosphorylation stimulates whereas tyrosine phosphorylation inhibits the protein-binding activity of the RNA Pol II C-terminal domain. PMID: 26515650
    19. The amount of RNA polymerase II (RNAPII) on the HIV promoter and other viral regions was strongly diminished in HIV-infected CD4+ cells co-cultivated with cell non-cytotoxic antiviral response-expressing CD8+ cells. PMID: 26499373
    20. Ash2L acts in concert with P53 promoter occupancy to activate RNA Polymerase II by aiding formation of a stable transcription pre-initiation complex required for its activation. PMID: 25023704
    21. Data suggest that RNA polymerase II inhibitors may be a useful class of agent for targeting dormant leukaemia cells. PMID: 23767415
    22. This viral pre-initiation complex is composed of five different proteins in addition to Epstein-Barr virus BcRF1 and interacts with cellular RNA polymerase II PMID: 25165108
    23. Data show that E2F-1 form a complex with RNA polymerase II and protein PURA for transcriptional activation of the secondary promoter. PMID: 24819879
    24. human CD68 gene expression is associated with changes in Pol II phosphorylation and short-range intrachromosomal gene looping PMID: 17583472
    25. s show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. PMID: 24828331
    26. This study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the carboxyl-terminal domain. PMID: 24165037
    27. Slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. PMID: 24793692
    28. sequence-specific double strand DNA breaks are sufficient to activate the positive transcription elongation factor b (P-TEFb), to trigger hyperphosphorylation of the largest RNA polymerase II carboxyl-terminal-domain (Rpb1-CTD) and to induce activation of p53-transcriptional axis resulting in cell cycle arrest. PMID: 23906511
    29. interaction with nuclear CD26 and POLR2A gene PMID: 23638030
    30. RECQL5 contacts the Rpb1 jaw domain of Pol II at a site that overlaps with the binding site for the transcription elongation factor TFIIS. Binding of RECQL5 to Pol II interferes with the ability of TFIIS to promote transcriptional read-through in vitro. PMID: 23748380
    31. Data show that p68/DdX5 immunoprecipitated with RNA polymerase II (RNAP II) and suggest p68 is important in facilitating beta-catenin and androgen receptor (AR) transcriptional activity in prostate cancer cells. PMID: 23349811
    32. inhibition of the transition of paused RNA PolII to productive elongation, described here for p21(CIP1), is a general mechanism by which transcription factor Sp3 fine-tunes gene expression. PMID: 23401853
    33. RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. PMID: 23395899
    34. Data indicate that polyamide treatment activates p53 signaling and results in a time- and and dose-dependent depletion of the RNA polymerase II (RNAP2) large subunit RPB1. PMID: 23319609
    35. CTCF binding sites regulate mRNA production, RNA polymerase II (RNAPII) programming, and nucleosome organization of the Kaposi's sarcoma-associated herpesvirus latency transcript control region. PMID: 23192870
    36. site-specific p65 phosphorylation targets NF-kappaB activity to particular gene subsets on a global level by influencing p65 and p-RNAP II promoter recruitment PMID: 23100252
    37. BRD4-driven Pol II phosphorylation at serine 2 plays an important role in regulating lineage-specific gene transcription in human CD4+ T cells. PMID: 23086925
    38. SNAPC1 is a general transcriptional coactivator that functions through elongating RNAPII. PMID: 22966203
    39. Cyclin K1 is the primary cyclin partner for CDK12/CrkRS and it is required for activation of CDK12/CrkRS to phosphorylate the C-terminal domain of RNA Pol II. PMID: 22988298
    40. Studies indicate that the super elongation complex (SEC) consisting of ELL, P-TEFb (CDK9) and MLL required for rapid transcriptional induction in the presence or absence of paused RNA polymerase II (Pol II). PMID: 22895430
    41. Results indicate roles for both the RNA polymerase II C-terminal domain (CTD) and O-GlcNAc in the regulation of transcription initiation. PMID: 22605332
    42. Here, the s report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. PMID: 22549466
    43. Studies suggest activator-induced structural shifts within Mediator trigger activation of stalled Pol II. PMID: 21326907
    44. These results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation within the human mediator-RNA polymerase II-TFIIF assembly. PMID: 22343046
    45. evidence that phosphorylation of Rpb1 CTD Thr4 residues is required specifically for histone mRNA 3' end processing, functioning to facilitate recruitment of 3' processing factors to histone genes PMID: 22053051
    46. Parcs/Gpn3 plays a critical role in the nuclear accumulation of RNAP II, and this function explains the relative importance of Parcs/Gpn3 in cell proliferation. PMID: 21782856
    47. kinetics of RNA polymerase II elongation during co-transcriptional splicing PMID: 21264352
    48. Data show that MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial measurements regarding the initiation of transcription. PMID: 21072189
    49. The deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription. PMID: 20941529
    50. Elevated PHD1 concomitant with decreased PHD2 are causatively related to Rpb1 hydroxylation and oncogenesis in human renal clear cell carcinomas with WT VHL gene. PMID: 20978146

    显示更多

    收起更多

  • 亚细胞定位:
    Nucleus. Cytoplasm. Chromosome.
  • 蛋白家族:
    RNA polymerase beta' chain family
  • 数据库链接:

    HGNC: 9187

    OMIM: 180660

    KEGG: hsa:5430

    STRING: 9606.ENSP00000314949

    UniGene: Hs.270017